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The effects of bottom friction on coastal trapped waves were investigated using an 
f-plane, two-layer model including shelf-slope topography. At a change-over latitude 
where the phase speeds of the internal Kelvin wave and the continental-shelf wave 
coincide, there are two types of behaviour of the ‘frictional’ eigenvalue (the phase 
speed and the damping rate) and the eigenfunctions, in terms of the inertial 
frequency f: if the frequency w is large, wave characteristics change from one wave 
to another with f (Case I) ; while if w is small enough, the wave characteristics do not 
change (Case 11). In  actual environments, it is predicted that the weather-band 
phenomena (period 2 days to 2 weeks) correspond to Case I, and very low-frequency 
(VLF) phenomena such as signals of El Niiio along the American Continent 
correspond to Case 11. Further, for baroclinic VLF waves, i t  is found that bottom 
friction retards the lower-layer velocity, which causes a decrease in damping. 
Therefore, the VLF signals caused by El Niiio can travel far from their origin, 
overcoming the effect of bottom friction. A bottom-intensified structure in barotropic 
VLF waves, due to bottom friction, has also been found. 

1. Introduction 
Low-frequency fluctuations in the coastal ocean have frequently been investigated 

using the theory of coastal trapped waves. For example, models have succeeded in 
reproducing observations of, especially, sea-level fluctuations (e.g. Battisti & Hickey 
1984 ; Church et al. 1986). In these models, which describe wave propagation in actual 
environments, bottom friction plays an important role because it is the principal 
dissipation mechanism for coastal trapped waves. 

For weather-band fluctuations (period 2 days-2 weeks), the model formulation 
including the effects of bottom friction is now well established for very generalized 
models including continuous stratification and arbitrary bottom topography (Clarke 
& Van Gorder 1986). Mathematically, the weather band means that the typical 
damping timescale D l r  is longer than 110, where r is’a friction coefficient, D the 
typical depth over the shelf and w a wave frequency. Therefore, we use a 
perturbation method using the small parameter r /Dw,  which is required for 
convergence of the friction terms. 

On the other hand, the effects of bottom friction on very low-frequency (VLF) 
waves have not been well investigated. It is likely that the VLF sea-level fluctuations, 
such as signals caused by El Niiio, propagate far from their origin. This suggests that 
energy dissipation due to bottom friction might not be important for propagation of 
the VLF waves. For example, Huyer & Smith (1985) have detected the 1982183 
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El Niiio signals at sea level along the coast of Oregon. It had arrived by an oceanic 
path because the sea-level anomaly led the associated atmospheric anomalies (both 
local and basin-wide scale) by 2-3 months. Further, the estimated phase speed of 
140 km/day is consistent with that of the internal Kelvin wave. As a result, the 
internal Kelvin wave was proposed as a possible mechanism for the propagation of 
the El Niiio signal. If so, the wave propagated from the Equator along the west coast 
of the American Continent as far as 8000 km overcoming the damping due to, for 
example, bottom friction and/or energy leakage by Rossby waves. Regarding 
bottom friction, Allen (1984), using a two-layer model with a flat bottom, noted that 
the lower-layer velocity for the VLF waves can be retarded by bottom friction which, 
in turn, tends to reduce the effect of bottom friction. In  his model, however, only the 
internal Kelvin wave can exist. Further development, including shelf-slope 
topography, is needed. 

In  the present paper, we discuss the effects of bottom friction on coastal trapped 
waves as a function of frequency. We use a two-layer model including shelf-slope 
topography and obtain analytical solutions. We examine the following two cases. 
First, in $4, bottom friction is as strong as the combined effect of stratification and 
topography ; the combined effect means that interfacial motion over a slope produces 
torque for vorticity motion, while divergence due to vorticity motion produces 
interfacial motion (Allen 1975). In  particular, we are interested in the behaviour of 
the phase speed and the damping rate near the change-over latitude where the wave 
properties (either the internal Kelvin waves or the continental-shelf waves) change 
from one wave to another if bottom friction is not considered (Allen & Romea 1980, 
hereinafter referred to as AR). Secondly, in $5, the effects on the VLF waves in which 
r / w D  is very large is examined. Results obtained in $5 correspond to the asymptotic 
results of $4. Further, the results are not restricted to those in the neighbourhood of 
the change-over latitude. Though the model in these sections is highly idealized, we 
expect that the results would be realized in continuous-stratification models and a 
real ocean ($6). 

We use an f-plane model. Therefore, this study is not directly applicable to the 
poleward propagation of coastal trapped waves ; the f-plane model does not include 
the leakage of energy flux due to Rossby waves and non-slowly varying effects. The 
latter implies that the energy flux is not conserved in a mode that changes 
continuously with latitude when the wavelength is longer than the typical lengthscale 
of the changes in the wave structures. Instead, our purpose is to undertand what 
kind of waves can overcome damping due t,o bottom friction and can travel far from 
their origin. The poleward propagation with bottom friction is discussed in a 
forthcoming paper from the present authors, and Mitsudera (1986). 

The results obtained in this paper have been generalized to a dynamical system of 
linearly coupled damped oscillators (Grimshaw & Allen 1982). Therefore, there may 
be various phenomena, such as the coupling between planetary and topographic 
Rossby waves (Takeda 1985) and that between atmospheric edge and internal 
gravity waves (Garrett 1969), in which we expect qualitatively the same results as 
those in this paper. 

2. Formulation 
We consider a two-layered ocean on a rotating frame with an angular velocity if, 

where f is constant. Without loss of generality, f is assumed to be positive. We used 
a Cartesian coodinate system (5, y, z ) ,  where z is positive upwards, x is the cross-shelf 
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FIGURE 1. Nomenclature and geometry used in the present study. 

direction and positive offshore and y is the alongshore direction. Velocity components 
are defined by (ui, vi, wi),  where subscripts i = 1 , 2  denote variables in the upper and 
lower layers respectively. 

Figure 1 shows the geometry considered in this study. The upper layer has density 
p, and a constant undisturbed thickness H ,  where the top surface is assumed to be 
rigid; the lower layer has density p2 and a undisturbed thickness H 2 ( x )  which is 
independent of y. The total thickness is H ( z )  ( =  H ,  +H,). A straight coast, at x = 0, 
has a vertical wall whose depth is D ,  and the interface intersects the vertical 
coast. 

The variables are non-dimensionalized in the following manner, where the primed 
ones are dimensionless : 

L 
(d, 9') = L-'(x, y), Z' = D-'z, t' = f t ,  (u;, v;)  = U-'(U,, vi), W: = mwi, 

( H ; , H ; ,  H') = D-'(H,, H,, H ) ,  h' = h*)h, 
z f  LU 

Pl+PlSZ, p ; =  P2 - P1 SHl + P2 d H l +  2 )  f ' = - ,  f 
f o  p J L U  P 2 f  LU 

where L is a characteristic horizontal scale, U a characteristic horizontal velocity 
and fo the Coriolis parameter a t  a change-over latitude. The variable pi is the 
pressure, h the deviation from the undisturbed interface and t the time. The constant 
Ap ( =  p2-p1 4 p 2 )  is the density difference between the two layers and g the 
acceleration due to gravity. 

Henceforth, the primes are dropped from the non-dimensional variables for the 
sake of neatness. Here, we adopt the following long-wave approximations : (i) 
motions are hydrostatic ; (ii) the alongshore scale of motions is much longer than the 
cross-shelf scale. The latter condition implies that  the non-dimensional frequencies of 
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the coastal trapped waves considered here are much smaller than unity. From these 
assumptions, the equations of motion and continuity become 

( H ,  4, + (Hl  vAY = S-lh,, ( 2 . l a )  

-fv1 = -P1x, V l t  + f U l  = - P l y ,  (2.1 b, c )  

-fv2 = - P 2 y ,  VZt +fu2 = - P 2 y ,  ( 2 . l e , f )  

where S is the stratification parameter [ = (gAp/p,) D/ f," L2] and E,  the vertical 
Ekman number (=  4r2/ ft D2). Note that the second term on the right-hand side of 
(2.1 d )  is the vertical velocity due to the Ekman pumping for low-frequency coastal 
trapped waves (Mitsudera & Hanawa 1987). Adding ( 2 . 1 a )  to ( 2 . l d ) ,  we can define 
a stream function corresponding to the total transport such that 

E; 

2Hl 
-$y = u,+a-'u2--v2, ( 2 . 2 ~ )  

$, = v1 + a-lv,, (2 .2b )  

where a = H J H , .  Further, continuity of pressure at the interface yields 

h = P,-P1. (2 .3 )  

This represents baroclinic motions. Then the equations in terms of $ and h, which 
represent the vorticity equations for total transport and the velocity difference, 
respectively, become 

with the boundary conditions 

E? a 
$y = 0, hy+hxt  = - , ,f(f$,+h,) a t  x = 0, (2 .5a )  

$,,h,+O as x + a .  (2 .5b)  

The boundary condition ( 2 . 5 ~ )  represents no net mass flux across the coast. The 
variables $ and h can be separated into two parts such that 

Here, $n and 7% satisfy with the following eigenvalue problem: 

( 2 . 7 ~ )  

(2 .7b)  
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with the boundary conditions 

(2.8a) 

(2.8b) 

From (2.7) and (2.8), the orthogonality condition of the eigenfunctions becomes 

EqQations (2.7) and (2.8) are the same as AR's (3.2)-(3.6). Further, (2.9) corresponds 
to AR's (3.9). Since these equations do not include the friction terms, we call xn a 
'conservative ' eigenvalue. As in AR xn, which represents a continental-shelf wave 
phase speed, increases as f increases, while that representing an internal Kelvin wave 
is independent off. Further, in the neighbourhood of a change-over latitude, the 
conservative eigenvalues change their properties from one to another. AR's (3.28) 
and (3.29) represent the above characteristics as follows : 

2 = $f-I-$(f""+K)i, (2.10) 

where 2 and f a r e  the deviations from the conservative eigenvalue and the inertial 
frequency a t  the change-over latitude, respectively. These are defined by 

x'-8,(1+2), f = 1+f l  

where 6, is the non-dimensional phase speed of the internal Kelvin wave without 
considering the continental shelf and slope and is independent off. The parameter K 
represents the coupling between topography and stratification as mentioned in the 
Introduction. In  a weak-slope model, for example, K is represented as follows : 

K = Sa(0) b,2 6;, 
where topography is defined as 

H = {  b, (x - l )+ l ,  0 < 5 < 1 
1 , 5 2 1  ' 

and b, 4 1. This is the same as (3.29b) of AR in which b, = S;;' and 1 = f,. 

orthogonality condition (2.9), we may obtain equations for Qn such that 
Substituting (2.6), (2.7) and (2.8) into (2.4) and (2.5), and considering the 

Ek 
(2.11) 1 

-Qnt + Qny = -- C amn Qm, 
Xn 2 m=l 

If Ek = 0, (2.11) represents the conservation of energy flux of each mode. The right- 
hand side of (2.11) are the bottom friction terms. These terms with m $: n represent 
the offshore and vertical phase shifts as in Brink & Allen (1978) and Brink (1982a). 
Further, these cause significant changes in the phase speed, the damping rate and the 
vertical profile of velocities. This will be discussed in the following sections. 
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3. Expansion away from the change-over latitude 
In the following sections, we discuss: (i) the dependence of the 'frictional' 

eigenvalues (the phase speed and the damping rate) on the latitude. i.e. f ;  (ii) the 
modifications in the vertical profile of the velocities due to bottom friction, or the 
structure of the 'frictional ' eigenfunctions. Let us consider a wavetrain solution such 
as 

Q ,  = 2 ~ f )  eiw(c;lu-t) 
m 

(3.1) 
j=1 

Substituting (3.1) into (2.11) yields 

A t  first, we assume that IE!/Zwl < 1 for the sake of analytical simplicity. Although 
this condition imposes severe restrictions on the frictional terms, we shall obtain a 
solution whose structure, phase speed and damping rate are strongly affected by 
bottom friction as shown in $4, where the effects of bottom friction around the 
change-over latitude are examined. 

When no two phase speeds are in the neighbourhood of the change-over latitude, 
the ' frictional ' eigenvalue and eigenvector become 

(3.3) 

For thejth-mode wave whose amplitude is RY), we can see from (3.4) that Rf) 
(n =k j )  is purely imaginary, which implies that they represent the offshore and 
vertical phase shifts as in Brink & Allen (1978) and Brink (1982~) .  Now, we estimate 
cj  assuming a(0)  Q 1. This expansion was adopted by AR, in which we may find 
distinct internal Kelvin waves and continental-shelf waves away from the change- 
over latitude. Although the results in this section are the same as those of Mitsudera 
& Hanawa (1988, hereinafter referred to as MH), we shall present a brief review for 
completeness, as the results are needed for $4. 

3.1. The con~inental- he^ wave 
When variables are expanded in terms of a(0) such that 

$hn = (iofi + . .., ?-#In = a(0) + ..., Xn = ion + . . ., 
the lowest orders of (2.7) become 

( 3 . 5 ~ )  

(3 .5b )  
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This represents the continental shelf wave. The real part of the frictional eigenvalue 

Note that the phase speed of a continental-shelf wave increases as f increases because 
the restoring force, the topographic /?-effect, becomes stronger. For the weak-slope 
model, for example, 

xn = - fbs/(n-+)2x2+O(a(0))  (n = 1,2, ...). 

On the other hand, the imaginary part of c,, the damping rate, becomes 

which is O(1) with respect to a(0). For the weak-slope model, the damping rate 
becomes 

[ (n - t )2x2+O(a(0 ) ) ]  (n  = 1,2, ...). 

3.2. The internal Kelvin wave 

q =To+ ..., x = xo+ ... ) 
Using 

4 = lJo+ ... ) 
as the expansion, the lowest-order equations with respect to a(0) are 

f 2  

( 3 . 8 ~ )  

(3 .8b )  

Equation (3 .8b)  represents an internal Kelvin wave whose structure is 

To = To(()) e(-f/dR)x, 

where ~ ~ ( 0 )  = O(a(0)i) from (2.9), and where 6, = (ASH,);. Substituting this into 
(2.8a), we find that 

Therefore, xo is independent off. Further, ( 3 . 8 ~ )  and ( 2 . 8 ~ )  shows that $o is also 
O(a(O)i), which implies that 

xo = -aR. (3.9) 

For example, the weak-slope model shows 

(3.10) 
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3.3. Xummary 
So far, we have derived the typical scales for the phase speed (3.6) and (3.9), and 
those for the damping rate (3.7) and (3.10). Since the conservative eigenvalues and 
eigenfunctions change their characteristics from one wave to another in the 
neighbourhood of the change-over latitude, the asymptotes of all and aZ2 around 
there, where subscripts 1 and 2 denote the two adjacent modes, become as 
follows : 

(3.11) 

A detailed discussion is given in MH. 
Comparing (3.10) with (3.7), we find that the damping of the internal Kelvin wave 

is weaker than that of the continental-shelf wave, though the differential dissipation 
obtained here is dependent on the assumption that a(0) is very small. However, the 
qualitative result is valid even when a(0)  2 1 (as shown by numerical calculations in 
MH) ; the bottom slope causes a surface intensified structure in the internal Kelvin 
wave, which decreases the effects of bottom friction, while stratification causes a 
bottom intensified structure in the continental-shelf wave. Further, in the 
continuous-stratification models, both surface and bottom-intensified waves prob- 
ably exist a t  low latitudes (e.g. Brink 1982 b ) .  Therefore, such differential dissipation 
is likely to be realized in a real ocean. 

4. Expansion in the neighbourhood of the change-over latitude 
4.1. Frictional eigenvalues : the phase speed and the damping rate 

The frictional coupling can occur a t  the lowest order in the neighbourhood of the 
change-bver latitude even if IEk/2wl Q 1.  That is, the structure, phase speed and 
damping are significantly influenced when strong frictional coupling is considered. 

If we assume that Ki  in (2.10) is O(lEk/2wl), the lowest-order terms in (3.2) 
become 

Ei E i  
(~;1-c-1)Rl+i-Jal lRl+i-a21R2 = 0, 

2w 2w 

E f  Ei 
( X ~ 1 - c - 1 ) R 2 + i ~ a 2 2 R 2 + i - - 4 1 a , 2 R ,  = 0 

2w 2w 

for the two adjacent frictional modes a t  the change-over latitude. The ‘mode’ used 
here is a sequence of the frictional eigenvalues depending continuously on the 
latitude. Solutions for the other frictional modes are the same as (3.3) and (3.4). 
Considering (2. lo),  the frictional eigenvalues of the adjacent modes become 

where 
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(a) (4 
FIGURE 2. Path of h with varyington the upper Riemann surface of the complex h-plane. Branch 
cuts are chosen so that Re((A2-A,2)4) = 0, where A,2 = (E , /w2)a12u21 .  (a) Case I, and ( b )  Case 11. The 
portion of a broken line is on the lower Riemann surface (Case 11). 

We can see from (4.1) that the complex A-plane has two branch points a t  A = fh,. 
We choose a branch cut so that IAl < A, on the real axis and define the upper (lower) 
Riemann surface if Re [ ( A 2 - A 3 i ]  is positive (negative). Since 

a,, < aZ2 as f+-00 { a,, > aZ2 as f+ 00, 
there are two possibilities as fincreases, as shown in figure 2 : the path of A remains 
on the upper Riemann surface if A, > A, (Case I), where A, is A at  a,, = uZ2, because 
(A2- - : )  + A  asf+ co ; the path resides on the lower Riemann surface if A, < A, (Case 
11) because (A2 - A:): + - A as f+ CQ. Therefore, the asymptotes of the ‘frictional ’ 
eigenvalues c, ,  are 

Note that x1 and all in the right-hand side of (4.2) are the variables representing the 
internal Kelvin wave as?+- CQ, and the continental-shelf wave asf+ 00. Therefore, 
c1 in Case I changes properties from the internal Kelvin wave to the continental-shelf 
wave asfincreases. On the other hand, we see that c1 in Case I1 does not change 
properties even if it passes the change-over latitude. This is a striking contrast to the 
result of the non-frictional model of AR. The frict,ional eigenvalue c2 shows the 
reverse behaviour. Figure 3 shows examples for the two cases. This result has been 
generalized to a dynamical system of linearly coupled damped oscillators by 
Grimshaw & Allen (1982). 

Since A, x IE$/wl and A, x K+/6,, the parameter K = IE~S,/Khl = 1 approxi- 
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FIGURE 3. Path of the frictional eigenvalues (cr, the real part ; c,, the imaginary part) with varying 
f. Solid and dashed lines denote the first and second frictional modes, respectively. (a) Case I, 
and ( b )  Case 11. Calculations were done using, an exponential depth profile H = H(O) exp (3.02). 
Other parameters are a(0) = O.l,S, = 0.43; IE";Zol = 0.2 for Case I, and 0.4 for Case 11. 

mately distinguishes between Cases 1 and 11. The parameter represents the ratio 
between the effects of bottom friction and the combined effect of stratification and 
topography. 

4.2. Frictional eigenfunctions : decoupling of upper- and lower-layer velocities 
due to bottom friction 

I n  this subsection, we discuss the effect of bottom friction on the vertical profile of 
the velocities. For simplicity, we examine the latitude where a,, = a22. 

Frictional eigenfunctions are expressed as 

where q5f and yr are the frictional eigenfunctions and the mode is denoted by 
superscripts ( 1 )  and (2) in this subsection. 

Here we examine alongshore velocity in the limit of K + oc) ; this requires Ki + O  
with S, fixed because we have assumed IEkf2wl < 1 .  That is, the coupling between 
topography and stratification is crucially weak compared with the effects of bottom 
friction. 

At the latitude where a,, = a22, which is close to the change-over latitude f = 1, we 
can see that 
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The subscripts 1 = 1 , 2  for wfl and vl denote the upper- and lower-layer velocities, 
respectively. As in AR, the amplitude ratio of qcn to qP) is O(a(0)i) in the 
neighbourhood of the change-over latitude. For example qV) and q ( j )  for the weak- 
slope model are 

$(') = A sinMx, M = (bS/6,)t ,  
~ ( j )  = +a(O)iA - e-(f/aR)s, 

where A is the normalization coefficient defined by (2.9). Further, the ratio of the 
amplitudes can also be estimated from (2.9) since the contribution of the q ( j )  and 
qP) terms to the integration is of the same order around the latitude. Therefore, we 
can take q5(') and q(') with respect to a(0)  as follows: 

= 4, p = 4, 
p = a(O)tq, q(Z) = - a(O)t q .  

Now the leading order of the alongshore velocity becomes 

because aI2 = -Jam &(fq5,)zdx+O(a(0)) .c 0. 

Substituting (4.4) and (4.5) into (4.3), we find 

Equation (4.6) shows that the upper- and lower-layer motions are decoupled. In 
conclusion, the lower-layer velocity of the first frictional mode, representing the 
internal Kelvin wave, is retarded by bottom friction as discussed in Allen (1984). 
Further, as a new effect because of the slope, the velocity in the continental-shelf 
wave shows the bottom-intensified structure when K --f cn. 

5. Very low-frequency waves 
In  this section, we consider VLF motions. The discussion here is not restricted to 

the vicinity of the change-over latitude (as it was in the previous section) since now 
IE\/Zwl % 1.  

Let us consider a sinusoidal wave such that 

For the internal Kelvin wave, the variables are expanded in terms of 20/E\ as 
follows : 

1 1 2 0 1  2 0  - 2 0  
E$ E; c co E5 c1 (5 .2 )  $5= 40+-$l+..., q =  TO+-TTI+ ..., - = -+-i-r+... * 
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Substituting (5.1) and (5.2) into (2.4) and (2.5), we obtain the lowest-order equations 
such as 

1 
[F (fA, +&.)I = 0, (5.3) 

$o = 0, f $ o , + ~ o ,  = O a t  x = 0, (5.4a) 

$ 0 , > ~ 0 , + 0  as x + o ,  (5.4b) 

where H = 0(1) is assumed. From (5.3) and (5.4), it follows that 

f$o+qo = constant = ~ ~ ( 0 ) .  (5.5) 

Therefore the alongshore velocity of lower layer wo,z is retarded by bottom friction, 
i.e. 

The expansion O(2wlEb) gives the phase speed and the wave structure of the waves 
as follows: 

f o  = y(0) e-fx’8R, $o = @,,(o) ( 1  -e-fX/’R), (5.71 

- HA01 
GO = -- H ( 0 )  a,‘ 

A detailed derivation is given in the Appendix. As seen in (5.7) and (5.8), this 
expansion represents the internal Kelvin wave. Since c0 is real, the damping rate of 
the waves is O(2wlEi). That is, the typical decay length L, is of the order of 

This implies that the VLF baroclinic wave can travel far from the origin because the 
lower-layer velocity is retarded by bottom friction. 

Next, we consider the expansion 

The lowest-order equations then become 

(5.9) 

(5.10) 

a 1 do = 0, - ( ~ ~ o , + i j o , ) + ~ ~ O  = o a t  x = 0, (5.11a) 

4 o x , ~ o , + o  as x + o .  (5.11 b)  

The equation (5.10) and the boundary conditions (5.1 1) yield an eigenv%lue problem. 
There is an infinite set of eigenvalues don and eigenfunctions ($no,ino). The 
orthogonality condition becomes 

H CO 
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where the asterisk denotes the complex-conjugate variables. Associated with this, we 
may obtain 

1 1  (&+q$) = 0. 

Therefore, E0 is purely imagipary, i.e. it represents the damping rate. When (5.10) and 
(5.11) are multiplied by (f&+$&), the damping rate becomes 

(5.13) 

Therefore, the typical wavelength L, is 

This corresponds to the damping length of the continental shelf wave. 

in the Appendix) 
The vorticity equation a t  0(2w/E\) gives the solution (the derivation is presented 

P 

(5.14) 

We can see that El, is real. Therefore, this represents the phase speed of the 
continental shelf wave. 

Now we have derived the eigenvalues c and E, which correspond to the internal 
Kelvin and the continental-shelf waves, respectively, and which are strongly 
modified by bottom friction. Since the ratio of L, to L, is O(E,/4w2),  we cannot find 
a latitude where F = c" as long as I2w/E$l < 1 (note that c" and care complex). That is, 
we do not need another expansion a t  the change-over latitude, where the phase 
speeds (the real part of c" and C) coincide with each other ; the system shows Case 11- 
type behaviour. In  conclusion, the results obtained in $4 are valid for wide parameter 
range of (E\/2wl even though we assumed IEk/2w( < 1 in that section. 

Further, the analysis of this section is not restricted to the neighbourhood of the 
change-over latitude. Therefore, we expect that the surface-intensified internal 
Kelvin waves due to bottom friction are likely to exist in the midlatitudes. In  the 
next section, we suggest some evidence of baroclinic VLF motions in the midlatitudes 
from observations. 

6. Summary and discussion 
We have investigated an eigenvalue problem for 'frictional ' coastal trapped waves 

using a two-layer model including shelf and slope topography. We used an f-plane 
model and have obtained the relationship between the eigenvalues (the phase speed 
and the damping rate) and the latitude. Further, modifications in the vertical profile 
of velocities due to  bottom friction have been found. 

It is one of the important results that  the bottom friction considerably modifies the 
vertical profile of velocities of the VLF coastal trapped waves; the internal Kelvin 
(continental-shelf) wave attains a surface- (bottom-) intensified structure due to 
bottom friction. For the internal Kelvin wave, in particular, the surface-intensified 
structure causes a decrease in damping. 

Further, the phase speed and the damping rate around the change-over latitude in 
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the frictional model show different behaviour from those in non-frictional models ; for 
short-period waves, the wave properties change from one wave to  another around the 
change-over latitude (Case I), while for the VLF waves, however, the properties do 
not change (Case 11). This means that the phase speeds intersect at the change-over 
latitude in Case 11. 

I n  the following, we examine K in a real ocean. We see from (2.10) that 

which is 0(1), and also 6, = O(1) in the neighbourhood of the change-over latitude 
in actual environments. Therefore, K is approximated by IEk/wl. In $5, further, 
IEt/Zwl was shown to be a key parameter which reflects the effects of bottom friction 
at  any latitude. 

Weather-band frequency phenomena have been observed in various coastal 
regions such as those off Oregon, Peru and Australia (e.g. Kundu & Allen 1976; 
Romea & Smith 1983; Freeland et al. 1986). When we choose the frequency w as 
lop5 s-', the resistance coefficient r as m s-l, and the typical depth D as 100 m, 
we obtain 

K <  1. 

This indicates that  the weather-band frequency phenomena are characterized by 
Case I. Therefore, the waves do not travel very far from the origin (O(1000 km)). 
This result corresponds to observations and models (e.g. Enfield & Allen 1983; 
Battisti & Hickey 1984). 

On the other hand, K for the VLF waves such as intraseasonal frequency 
(e.g. Spillane, Enfield & Allen 1987) [w = O( loa6 s-l)] and annual frequency [w = 

O( lo-' s-')I fluctuations is 

K X 0(1)-0(10).  

These indicate that the VLF waves are characterized by Case 11. Therefore, the 
baroclinic waves can travel far from their origin. For example, Huyer & Smith (1985) 
found that the signals caused by the 1982/83.E1 Niiio off the coast of Oregon had 
arrived by an oceanic path ; it led the associated atmospheric disturbances by two or 
three months. The offshore scale of the phenomena estimated by the AD profile was 
30 km ; this corresponds with the internal Rossby radius. Further, they estimated the 
phase speed as 140 km/day. These observations can be understood in terms of 
internal Kelvin waves which propagate long distances from the Equator. Non- 
frictional models cannot explain such baroclinic behaviour because these models 
predict that the motions over the shelf in midlatitudes are barotropic (Clarke & 
Brink 1985). Therefore, the baroclinic structure is likely to be set up by retarding of 
the lower-layer velocity. 

We have analysed a highly idealized, two-layer model. We need further discussions 
using continuous-stratification models for i t  to apply to  a real ocean. However, the 
qualitative results we obtain will be realized in the continuous-stratification models 
because the bottom boundary condition for them can be written as follows (Clarke 
& Van Gorder 1986): 
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where (dldx) [ ]z--h is the cross-shelf derivative along the bottom topography. 
Therefore, if r / w  9 1, we obtain 

for the lowest-order equation. Since $n --f 0 as x +XI, the alongshore velocity v = $, 
approaches zero over the shelf as IwI + 0. 

We have used an f-plane model. Therefore, we cannot apply this model directly to  
the poleward propagation of the coastal trapped waves since changes in the Coriolis 
parameter should then be considered. The following two effects may be missed by an 
f-plane model: (i) the non-slowly varying effect for f ,  which is briefly mentioned in 
the introduction ; (ii) the energy leakage from the coastal region to the ocean interior 
as Rossby waves. 

For a short wave in which f varies slightly over one longshore wavelength, the 
properties of the propagating waves change along with the eigenvalues which 
continuously depend on f (Grimshaw 1977 ; AR). Therefore, the poleward 
propagation of the weather-band coastal trapped waves is probably characterized by 
Case I. That is, the internal Kelvin wave originating near the Equator changes its 
form to a continental-shelf wave in midlatitudes and cannot propagate far from the 
origin. If the wavelength is longer than the typical scale of changes in f ,  however, the 
waves tend to retain their properties as t,hey cross the change-over latitude (e.g. 
Suginohara 1981). Therefore, both the non-slowly varying effect and the behaviour 
of the eigenvalues in Case I1 tend to allow the waves to retain their characteristics 
as they travel across the change-over latitude. These discussions are presented in a 
forthcoming paper by the present authors, and Mitsudera (1986). 

Thef-plane model provides only for trapped waves. If the frequency is very low, 
however, energy leakage due to Rossby waves becomes important. Grimshaw & 
Allen (1988) have estimated the critical frequency w, between trapped and leaky 
internal Kelvin waves and have found that the waves of period less than 200 days 
are coastally trapped in almost all regions along the North American Continent 
except for the Equatorial region. Therefore, we expect the analysis in $ 5  to be useful 
for the waves with 2 x / w ,  < 200 days in midlatitudes. 

We acknowledge valuable discussions and comments by Professors Y. Toba, 
R. Grimshaw; Drs K.  Brink, D. Broutman, A. Kubokawa; Messrs Y. Yano and 
S. Power. 

Appendix. Derivation of eigenvalues and eigenfunctions when IE;/Zwl % 1 

The 0(2w/Eb)  equations and boundary conditions become 
A . l .  The internal Kelvin wave 

a t  x = 0, 
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where (5.5) is used. From (A la ,  b )  and (5.5), it follows that 
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qox.-& = 0. 
SHl 

Therefore, considering the boundary conditions in (5.4), we may obtain 

= qO(o) e-fx’SK, = qO(o) (1  -e-fZ/$R). (A 4) 

Further, integration of (A l a )  gives 

where the integration constant is derived using (A 2 b ) .  From (A 2a) ,  (A 4) and (A 5), 
we obtain 

A.2. The continental shelf wave 

A derivation of the O( 1 )  solution is presented in the text. At 0(2w/E; ) ,  the equations 
and corresponding boundary conditions become 

Therefore, the lowest-order eigepfunction is determined by (5.10) and (A 9). Equation 
(A 7 a )  is then multiplied by f # &  and (A 7 b )  by $&. These are combined with two 
a4ditional equations obtained by multiplying the complex conjugate of (5.10) by 
f $ l n  and by iln. The same procedure is applied to the boundary conditions. Since 
cAo is purely imaginary, we obtain (5.14). 
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